If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49-100k^2=0
a = -100; b = 0; c = +49;
Δ = b2-4ac
Δ = 02-4·(-100)·49
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*-100}=\frac{-140}{-200} =7/10 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*-100}=\frac{140}{-200} =-7/10 $
| 5-(4b-2)=3-4b | | 8x+5=-2+9x | | 5n-16-8n=-18 | | 2x-16=12x-72 | | -6=2÷9x | | 3x+2(-2x+3)=-3 | | -4/x=29 | | 123+(x-3)+(x-3)=180 | | 4n+1=-6 | | 1.80(2t+2.50)+3=13,80 | | (5x-22)(3x+42)=180 | | 8d-42=1/36-9d | | 3h-8=2h+10 | | (4x-18)=(3x-8) | | 8d-42=0.333(6-9d) | | 0.3h-0.8=0.2h+1 | | 34/6=2x+1 | | -2x=2x-8 | | -1-12p+10p=-11-p | | -x^2-4=-29 | | 2s+4=8 | | 3k-13=5 | | -4x=-14/4 | | 13x=6633 | | -4x=14/4 | | x^2-14-4=1 | | 3x+17=-3 | | 10x^2-20x=400 | | 2g+(-4+4g)=1-g | | 0.75(x)-7=8 | | x(.25)=575 | | 1,000+1200m=1500+1175m |